metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2-phenyl-4,6-di-2-pyridyl-1,3,5triazine- $\kappa^3 N^4 N^5 N^6$)ruthenium(II) bis(hexafluoridophosphate)

Matthew I. J. Polson^a* and Garry S. Hanan^b

^aChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand, and ^bDépartement de Chimie, Université de Montréal, Montréal, Québec, H3T 1J4, Canada

Correspondence e-mail: matthew.polson@canterbury.ac.nz

Received 9 November 2007; accepted 14 December 2007

Key indicators: single-crystal X-ray study; T = 93 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.027; wR factor = 0.066; data-to-parameter ratio = 14.3.

The asymmetric unit of the title compound, $[Ru(C_{19}H_{13}N_5)_2]$ -(PF₆)₂, consists of an Ru^{II} complex cation and two hexafluoridophosphate anions. The Ru^{II} atom is coordinated by three N atoms from the two outer pyridine and the central triazine rings of each of two tridentate ligands in a distorted octahedral environment. The ligands are approximately orthogonal to one another, with a dihedral angle of $88.34 (2)^{\circ}$ between planes through the three six-membered rings of the two ligands. The pendant phenyl substituents are almost coplanar with the triazine rings to which they are bound, with dihedral angles of 5.41 (9) and 14.90 (10)°. This is reflected in the previously reported photophysical results with an increased lifetime of the triplet metal to ligand charge transfer (³MLCT) excited state [Fang, Taylor, Hanan, Loiseau, Passalacqua, Campagna, Nierengarten & Van Dorsselaer (2002). J. Am. Chem. Soc. 124, 7912-7913].

Related literature

For related synthetic details, see: Polson et al. (2002, 2004). For related structures, see: Polson et al. (2002). For general background on the photophysics of ruthenium polypyridyl complexes, see: Kalvanasundaram (1991); Barigelletti et al. (1995). For background on C-H···N interactions in α diimines, see: Fitchett et al. (2005). For related literature, see: Beley et al. (1991); Fang et al. (2002).

Experimental

Crystal data

[Ru(C₁₉H₁₃N₅)₂](PF₆)₂ $M_r = 1013.70$ Monoclinic, $P2_1/n$ a = 9.0995 (3) Å b = 32.5979 (11) Å c = 13.1451 (5) Å $\beta = 91.774 (2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.822, \ T_{\max} = 0.950$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	568 parameters
$wR(F^2) = 0.066$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
8114 reflections	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

V = 3897.3 (2) Å³

Mo $K\alpha$ radiation $\mu = 0.59 \text{ mm}^-$

 $0.30 \times 0.13 \times 0.08 \text{ mm}$

75901 measured reflections

8114 independent reflections

6511 reflections with $I > 2\sigma(I)$

T = 93 (2) K

 $R_{\rm int} = 0.060$

Z = 4

Table 1

Selected geometric parameters (Å, °).

Ru1-N10	2.0982 (16)	Ru1-N50	2.0967 (16)
Ru1-N20	1.9773 (15)	Ru1-N60	1.9723 (15)
Ru1-N30	2.0990 (16)	Ru1-N70	2.0939 (17)
N10 - Ru1 - N30	154 76 (6)	$N50 - R_{11} - N30$	92 35 (6)
N60-Ru1-N20	179.28 (7)	N60-Ru1-N50	77.85 (6)
N70-Ru1-N50	155.22 (6)	N60-Ru1-N70	77.42 (6)
N20-Ru1-N70	103.31 (6)	N60-Ru1-N10	102.25 (6)
N20-Ru1-N50	101.42 (6)	N60-Ru1-N30	102.98 (6)
N20-Ru1-N10	77.77 (6)	N70-Ru1-N10	91.67 (6)
N20-Ru1-N30	77.00 (6)	N70-Ru1-N30	94.71 (6)
N50-Ru1-N10	91.99 (6)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C41—H41…N21 C45—H45…N22 C81—H81…N61 C85—H85…N62	0.95 0.95 0.95 0.95	2.47 2.52 2.47 2.50	2.793 (3) 2.826 (3) 2.797 (2) 2.823 (3)	100 99 100 100

Data collection: APEX2 (Bruker, 2007): cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2008).

MIJP thanks the New Zealand Foundation of Research Science and Technology for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2423).

References

- Barigelletti, F., Flamigni, L., Balzani, V., Collin, J.-P., Sauvage, J.-P. & Sour, A. (1995). New J. Chem. 19, 793–798.
- Beley, M., Collin, J.-P., Sauvage, J.-P., Sugihara, H., Heisel, F. & Miehe, A. (1991). J. Chem. Soc. Dalton Trans. pp. 3157–3159.
- Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Fang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R., Campagna, S., Nierengarten, H. & Van Dorsselaer, A. (2002). J. Am. Chem. Soc. 124, 7912–7913.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fitchett, C. M., Richardson, C. & Steel, P. J. (2005). Org. Biomol. Chem. 3, 498– 502.

- Kalyanasundaram, K. (1991). *Photochemistry of Polypyridine and Porphyrin Complexes*. London: Academic Press.
- Polson, M. I. J., Medlycott, E. A., Hanan, G. S., Mikelsons, L., Taylor, N. J., Watanabe, M., Tanaka, Y., Loiseau, F., Passalacqua, R. & Campagna, S. (2004). *Chem. Eur. J.* 10, 3640–3648.
- Polson, M. I. J., Taylor, N. J. & Hanan, G. S. (2002). Chem. Commun. pp. 1536– 1537.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Westrip, S. P. (2008). publCIF. In preparation.

Acta Cryst. (2008). E64, m254-m255 [doi:10.1107/S1600536807066883]

Bis(2-phenyl-4,6-di-2-pyridyl-1,3,5-triazine- $\kappa^3 N^4$, N^5 , N^6)ruthenium(II) bis(hexafluoridophosphate)

M. I. J. Polson and G. S. Hanan

Comment

The structure of the title compound reveals the ruthenium(II) atom to be in a distorted octahedral environment, Table 1. The Ru—N bond lengths to the central triazine ring are significantly shortened when compared to those of the outer pyridine rings. The angles between the coordinating pyridine N atoms also deviate significantly from 180 ° indicating considerable distortion.

Ruthenium complexes of this type have long been known to exhibit surprisingly short lived excited states. This is due to rapid deactivation of the excited state through a low lying metal centred state (Kalyanasundaram, 1991; Barigelletti *et al.*, 1995). By lowering the energy of the triplet metal to ligand charge transfer ³MLCT state, this exchange can be slowed and the lifetime of the excited state is extended (Fang *et al.*, 2002). In the title compound (1) replacement of a the central pyridine ring with a triazine ring in complex with a 4-phenyl substituent allows the pendant phenyl ring to adopt an arrangement in which it is approximately co-planar with the rest of the ligand. This results from the removal of stericically conflicting C—H···H—C interactions and the addition of attractive intramolecular C—H···N interactions. Although the C—H···N angles are acute (approximately 100 °) they are typical of interactions in molecules of this kind (Fitchett *et al.*, 2005) with N···H lengths of 2.47 to 2.52 Å, Table 2. The greater overall planarity of the ligands extends the HOMO orbital (predominately π^* in nature) over more of the ligand surface, decreasing the energy of the ³MLCT state (Beley *et al.*, 1991; Polson *et al.*, 2002).

Experimental

The complex was prepared as described by Polson *et al.* (2004). Crystals suitable for X-ray crystallography were prepared by the diffusion of diisopropyl ether into an acetonitrile solution of the complex over a week.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C).

Figures

Fig. 1. The molecular structure of (1), showing displacement ellipsoids at the 50% probability level. All H atoms have been omitted for clarity.

Bis(2-phenyl-4,6-di-2-pyridyl-1,3,5-triazine- $\kappa^3 N^4$, N^5 , N^6) ruthenium(II) bis(hexafluoridophosphate)

Crystal data

[Ru(C ₁₉ H ₁₃ N ₅) ₂](PF ₆) ₂	$F_{000} = 2024$
$M_r = 1013.70$	$D_{\rm x} = 1.728 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 7650 reflections
a = 9.0995 (3) Å	$\theta = 4.7 - 53.0^{\circ}$
b = 32.5979 (11) Å	$\mu = 0.59 \text{ mm}^{-1}$
c = 13.1451 (5) Å	T = 93 (2) K
$\beta = 91.774 \ (2)^{\circ}$	Needle, red
V = 3897.3 (2) Å ³	$0.30\times0.13\times0.08~mm$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	8114 independent reflections
Radiation source: sealed tube	6511 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$
T = 93(2) K	$\theta_{\text{max}} = 26.6^{\circ}$
ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2007)	$h = -11 \rightarrow 11$
$T_{\min} = 0.822, \ T_{\max} = 0.950$	$k = -40 \rightarrow 40$
75901 measured reflections	$l = -16 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 0.5007P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} < 0.001$
8114 reflections	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
568 parameters	$\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ \boldsymbol{Z} х y Ru1 0.01108 (5) 0.511004 (17) 0.118305 (4) 0.711838 (12) N10 0.71581 (17) 0.12419 (5) 0.64422 (12) 0.0136 (4) C10 0.0179 (5) 0.8068(2)0.09472 (6) 0.61281 (16) H10 0.7805 0.0669 0.6231 0.021* C11 0.56596 (17) 0.9375 (2) 0.10327 (6) 0.0232 (5) H11 0.9978 0.028* 0.0815 0.5433 C12 0.9798(2)0.14335 (6) 0.55231 (17) 0.0240(5)H12 1.0700 0.1496 0.029* 0.5212 C13 0.8884(2)0.17461 (6) 0.58476 (16) 0.0192(5)H13 0.9150 0.2026 0.5765 0.023* C14 0.7588 (2) 0.16422 (5) 0.62909 (15) 0.0141 (4) N20 0.70707 (12) 0.53678 (17) 0.17849(5)0.0123(3)N21 0.67356 (18) 0.23500 (5) 0.65306 (13) 0.0158 (4) N22 0.44719 (18) 0.24472 (5) 0.73807 (12) 0.0148 (4) C20 0.6545(2)0.19520(6) 0.66416 (15) 0.0137 (4) C21 0.0147 (4) 0.5662(2)0.25871 (6) 0.69099 (15) C22 0.4357 (2) 0.20427 (6) 0.74240 (15) 0.0132 (4) N30 0.31752 (18) 0.14032 (5) 0.77547 (12) 0.0130(3) C30 0.2009 (2) 0.11839 (6) 0.80597 (16) 0.0177 (4) H30 0.2042 0.0893 0.8016 0.021* C31 0.0766 (2) 0.13690 (6) 0.84348 (17) 0.0220 (5) H31 -0.00400.1205 0.8633 0.026* C32 0.0698 (2) 0.17918 (6) 0.85204 (17) 0.0221 (5) H32 0.027* -0.01410.1921 0.8790 C33 0.1878 (2) 0.20221 (6) 0.82050 (15) 0.0180 (4) H33 0.2313 0.022* 0.1858 0.8247 C34 0.3083(2)0.18235 (6) 0.78291 (15) 0.0133 (4) C40 0.5820(2) 0.30342 (6) 0.67733 (16) 0.0172 (4) C41 0.6825 (2) 0.60975 (17) 0.31883 (6) 0.0223 (5) H41 0.7451 0.3007 0.5747 0.027* C42 0.6911 (3) 0.36089 (6) 0.59355 (18) 0.0268 (5) H42 0.7585 0.3715 0.5464 0.032* C43 0.6018 (3) 0.38746(6) 0.64602 (18) 0.0263(5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H43	0.6081	0.4162	0.6349	0.032*
C44	0.5033 (2)	0.37218 (6)	0.71460 (18)	0.0237 (5)
H44	0.4433	0.3905	0.7513	0.028*
C45	0.4920 (2)	0.33042 (6)	0.72995 (17)	0.0207 (5)
H45	0.4232	0.3200	0.7763	0.025*
N50	0.40436 (17)	0.10703 (5)	0.57094 (12)	0.0124 (3)
C50	0.3662 (2)	0.13390 (6)	0.49749 (15)	0.0141 (4)
H50	0.3903	0.1620	0.5073	0.017*
C51	0.2932 (2)	0.12242 (6)	0.40811 (16)	0.0162 (4)
H51	0.2681	0.1424	0.3579	0.019*
C52	0.2572 (2)	0.08161 (6)	0.39243 (16)	0.0172 (4)
H52	0.2063	0.0732	0.3318	0.021*
C53	0.2965 (2)	0.05329 (6)	0.46646 (15)	0.0161 (4)
H53	0.2732	0.0251	0.4572	0.019*
C54	0.3700 (2)	0.06633 (5)	0.55407 (15)	0.0120 (4)
N60	0.48400 (17)	0.05829 (5)	0.71489 (12)	0.0129 (3)
N61	0.40078 (18)	-0.00188 (5)	0.63404 (12)	0.0143 (4)
N62	0.51801 (18)	-0.00465 (5)	0.79959 (13)	0.0147 (4)
C60	0.4180 (2)	0.03841 (6)	0.63663 (15)	0.0137 (4)
C61	0.4496 (2)	-0.02227 (6)	0.71801 (15)	0.0148 (4)
C62	0.5347 (2)	0.03559 (6)	0.79454 (15)	0.0143 (4)
N70	0.61068 (17)	0.10207 (5)	0.85180 (12)	0.0136 (4)
C70	0.6809 (2)	0.12700 (6)	0.91947 (15)	0.0158 (4)
H70	0.6798	0.1557	0.9076	0.019*
C71	0.7543 (2)	0.11210 (6)	1.00527 (16)	0.0187 (4)
H71	0.8037	0.1305	1.0508	0.022*
C72	0.7560 (2)	0.07045 (6)	1.02492 (16)	0.0197 (5)
H72	0.8068	0.0599	1.0835	0.024*
C73	0.6820(2)	0.04436 (6)	0.95750 (16)	0.0173 (4)
H73	0.6803	0.0156	0.9695	0.021*
C74	0.6111 (2)	0.06077 (6)	0.87298 (15)	0.0145 (4)
C80	0.4271 (2)	-0.06706 (6)	0.71991 (15)	0.0155 (4)
C81	0.3459 (2)	-0.08622 (6)	0.64177 (16)	0.0194 (5)
H81	0.3037	-0.0703	0.5878	0.023*
C82	0.3265 (2)	-0.12824 (6)	0.64252 (18)	0.0236 (5)
H82	0.2722	-0.1411	0.5886	0.028*
C83	0.3860 (2)	-0.15176 (6)	0.72169 (18)	0.0237 (5)
H83	0.3720	-0.1806	0.7221	0.028*
C84	0.4651 (2)	-0.13302 (6)	0.79949 (17)	0.0227 (5)
H84	0.5049	-0.1490	0.8541	0.027*
C85	0.4873 (2)	-0.09084 (6)	0.79877 (16)	0.0197 (5)
H85	0.5435	-0.0782	0.8522	0.024*
P10	0.21119 (6)	0.252045 (16)	0.48554 (4)	0.02011 (13)
F10	0.18421 (15)	0.22740 (4)	0.58837 (10)	0.0386 (4)
F11	0.26219 (15)	0.29172 (4)	0.54874 (10)	0.0327 (3)
F12	0.04573 (14)	0.26820 (4)	0.48256 (10)	0.0362 (3)
F13	0.23965 (14)	0.27617 (3)	0.38108 (9)	0.0250 (3)
F14	0.16179 (15)	0.21244 (4)	0.42100 (10)	0.0339 (3)
F15	0.37791 (14)	0.23611 (4)	0.48793 (11)	0.0353 (3)

P20	0.01052 (6)	0.008488 (16)	0.76644 (5)	0.02301 (14)
F20	-0.05493 (16)	-0.01201 (4)	0.86490 (11)	0.0395 (4)
F21	-0.04478 (14)	0.05249 (3)	0.80299 (10)	0.0278 (3)
F22	-0.14343 (15)	0.00207 (4)	0.70590 (11)	0.0369 (4)
F23	0.07743 (16)	0.02936 (4)	0.66771 (11)	0.0399 (4)
F24	0.06484 (16)	-0.03543 (4)	0.72907 (12)	0.0396 (4)
F25	0.16550 (15)	0.01533 (4)	0.82574 (13)	0.0452 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.01126 (9)	0.00884 (8)	0.01317 (9)	-0.00001 (6)	0.00056 (6)	-0.00003 (6)
N10	0.0122 (9)	0.0126 (8)	0.0159 (9)	0.0005 (6)	-0.0007 (7)	0.0005 (7)
C10	0.0173 (11)	0.0149 (10)	0.0214 (12)	0.0028 (8)	-0.0001 (9)	0.0018 (8)
C11	0.0189 (12)	0.0222 (11)	0.0288 (13)	0.0087 (9)	0.0053 (10)	0.0020 (9)
C12	0.0129 (11)	0.0274 (12)	0.0320 (14)	0.0020 (9)	0.0074 (10)	0.0044 (10)
C13	0.0155 (11)	0.0182 (10)	0.0240 (12)	-0.0028 (8)	0.0010 (9)	0.0028 (9)
C14	0.0149 (11)	0.0135 (9)	0.0135 (11)	-0.0004 (8)	-0.0032 (8)	-0.0011 (8)
N20	0.0124 (9)	0.0125 (8)	0.0120 (9)	-0.0001 (6)	-0.0015 (7)	-0.0014 (6)
N21	0.0170 (9)	0.0124 (8)	0.0178 (10)	-0.0018 (7)	-0.0025 (7)	-0.0012 (7)
N22	0.0182 (9)	0.0106 (8)	0.0153 (9)	0.0016 (7)	-0.0031 (7)	-0.0012 (7)
C20	0.0127 (10)	0.0152 (10)	0.0130 (11)	-0.0019 (8)	-0.0031 (8)	-0.0006 (8)
C21	0.0166 (11)	0.0133 (9)	0.0140 (11)	-0.0020 (8)	-0.0047 (8)	-0.0014 (8)
C22	0.0112 (10)	0.0144 (9)	0.0136 (11)	0.0006 (8)	-0.0033 (8)	-0.0012 (8)
N30	0.0139 (9)	0.0137 (8)	0.0114 (9)	-0.0001 (7)	-0.0002 (7)	-0.0005 (6)
C30	0.0181 (11)	0.0163 (10)	0.0189 (11)	-0.0040 (8)	0.0010 (9)	-0.0006 (8)
C31	0.0174 (12)	0.0256 (11)	0.0234 (13)	-0.0048 (9)	0.0069 (9)	-0.0032 (9)
C32	0.0176 (11)	0.0258 (11)	0.0233 (13)	0.0045 (9)	0.0055 (9)	-0.0038 (9)
C33	0.0198 (11)	0.0168 (10)	0.0174 (11)	0.0017 (8)	0.0010 (9)	-0.0008 (8)
C34	0.0149 (10)	0.0131 (9)	0.0116 (10)	-0.0011 (8)	-0.0022 (8)	0.0004 (8)
C40	0.0189 (11)	0.0118 (9)	0.0203 (12)	-0.0021 (8)	-0.0091 (9)	0.0007 (8)
C41	0.0276 (13)	0.0157 (10)	0.0233 (13)	-0.0021 (9)	-0.0030 (10)	-0.0006 (9)
C42	0.0321 (14)	0.0194 (11)	0.0283 (14)	-0.0084 (10)	-0.0078 (11)	0.0061 (9)
C43	0.0321 (14)	0.0129 (10)	0.0329 (14)	-0.0011 (9)	-0.0184 (11)	0.0019 (9)
C44	0.0225 (12)	0.0155 (10)	0.0326 (14)	0.0019 (9)	-0.0093 (10)	-0.0031 (9)
C45	0.0195 (12)	0.0162 (10)	0.0260 (13)	-0.0004 (8)	-0.0067 (9)	-0.0020 (9)
N50	0.0096 (8)	0.0120 (8)	0.0156 (9)	0.0008 (6)	0.0028 (7)	-0.0017 (6)
C50	0.0124 (10)	0.0136 (9)	0.0164 (11)	0.0022 (8)	0.0038 (8)	0.0010 (8)
C51	0.0140 (10)	0.0165 (10)	0.0182 (11)	0.0045 (8)	0.0019 (8)	0.0029 (8)
C52	0.0164 (11)	0.0210 (10)	0.0143 (11)	0.0026 (8)	0.0006 (9)	-0.0026 (8)
C53	0.0138 (10)	0.0142 (9)	0.0202 (12)	0.0006 (8)	0.0016 (9)	-0.0032 (8)
C54	0.0087 (10)	0.0133 (9)	0.0142 (11)	0.0018 (7)	0.0041 (8)	-0.0002 (8)
N60	0.0119 (9)	0.0139 (8)	0.0128 (9)	0.0010 (6)	0.0019 (7)	0.0000 (7)
N61	0.0152 (9)	0.0123 (8)	0.0154 (9)	0.0002 (7)	0.0028 (7)	0.0004 (7)
N62	0.0139 (9)	0.0123 (8)	0.0180 (10)	-0.0002 (6)	0.0026 (7)	0.0007 (7)
C60	0.0100 (10)	0.0145 (9)	0.0168 (11)	-0.0007 (8)	0.0033 (8)	-0.0020 (8)
C61	0.0127 (10)	0.0142 (9)	0.0177 (11)	0.0010 (8)	0.0047 (8)	0.0004 (8)
C62	0.0114 (10)	0.0148 (9)	0.0171 (11)	0.0019 (8)	0.0032 (8)	0.0028 (8)

N70	0.0125 (9)	0.0119 (8)	0.0166 (9)	-0.0002 (7)	0.0021 (7)	-0.0002 (7)
C70	0.0156 (11)	0.0142 (10)	0.0177 (11)	-0.0022 (8)	0.0016 (9)	-0.0021 (8)
C71	0.0185 (11)	0.0209 (11)	0.0165 (11)	-0.0018 (9)	-0.0016 (9)	-0.0021 (8)
C72	0.0212 (12)	0.0219 (10)	0.0160 (12)	0.0020 (9)	-0.0003 (9)	0.0026 (9)
C73	0.0180 (11)	0.0146 (10)	0.0194 (12)	-0.0006 (8)	0.0024 (9)	0.0024 (8)
C74	0.0140 (10)	0.0142 (9)	0.0154 (11)	0.0001 (8)	0.0040 (8)	0.0005 (8)
C80	0.0138 (11)	0.0124 (9)	0.0208 (12)	0.0015 (8)	0.0069 (9)	0.0002 (8)
C81	0.0175 (11)	0.0166 (10)	0.0242 (12)	0.0018 (8)	0.0020 (9)	0.0008 (9)
C82	0.0228 (12)	0.0163 (10)	0.0318 (14)	-0.0018 (9)	0.0008 (10)	-0.0053 (9)
C83	0.0224 (12)	0.0108 (10)	0.0382 (15)	-0.0009 (9)	0.0062 (10)	0.0008 (9)
C84	0.0247 (13)	0.0158 (10)	0.0280 (14)	0.0038 (9)	0.0044 (10)	0.0068 (9)
C85	0.0194 (11)	0.0171 (10)	0.0228 (13)	-0.0001 (9)	0.0034 (9)	0.0005 (9)
P10	0.0221 (3)	0.0165 (3)	0.0213 (3)	-0.0062 (2)	-0.0066 (2)	0.0052 (2)
F10	0.0444 (9)	0.0439 (8)	0.0267 (8)	-0.0221 (7)	-0.0129 (7)	0.0191 (6)
F11	0.0482 (9)	0.0203 (6)	0.0289 (8)	-0.0060 (6)	-0.0121 (7)	-0.0017 (6)
F12	0.0238 (8)	0.0526 (9)	0.0321 (8)	0.0031 (6)	-0.0023 (6)	0.0042 (7)
F13	0.0325 (8)	0.0205 (6)	0.0221 (7)	-0.0048 (5)	-0.0007 (6)	0.0061 (5)
F14	0.0488 (9)	0.0168 (6)	0.0350 (8)	-0.0108 (6)	-0.0161 (7)	0.0028 (6)
F15	0.0278 (8)	0.0266 (7)	0.0510 (9)	0.0031 (6)	-0.0085 (7)	0.0075 (6)
P20	0.0197 (3)	0.0132 (3)	0.0362 (4)	0.0013 (2)	0.0028 (3)	0.0045 (2)
F20	0.0471 (9)	0.0261 (7)	0.0462 (9)	0.0023 (6)	0.0159 (7)	0.0127 (6)
F21	0.0287 (7)	0.0152 (6)	0.0396 (8)	-0.0012 (5)	0.0023 (6)	-0.0028 (5)
F22	0.0330 (8)	0.0214 (7)	0.0556 (10)	-0.0009 (6)	-0.0114 (7)	-0.0082 (6)
F23	0.0446 (9)	0.0280 (7)	0.0483 (10)	0.0128 (6)	0.0215 (7)	0.0156 (7)
F24	0.0415 (9)	0.0165 (6)	0.0616 (10)	0.0101 (6)	0.0152 (7)	0.0042 (6)
F25	0.0277 (8)	0.0321 (8)	0.0746 (12)	-0.0004 (6)	-0.0156 (8)	0.0129 (8)

Geometric parameters (Å, °)

Ru1—N10	2.0982 (16)	С50—Н50	0.9500
Ru1—N20	1.9773 (15)	C51—C52	1.384 (3)
Ru1—N30	2.0990 (16)	C51—H51	0.9500
Ru1—N50	2.0967 (16)	C52—C53	1.380 (3)
Ru1—N60	1.9723 (15)	С52—Н52	0.9500
Ru1—N70	2.0939 (17)	C53—C54	1.381 (3)
N10-C10	1.342 (2)	С53—Н53	0.9500
N10-C14	1.378 (2)	C54—C60	1.472 (3)
C10-C11	1.385 (3)	N60—C60	1.342 (2)
С10—Н10	0.9500	N60—C62	1.351 (2)
C11—C12	1.375 (3)	N61—C60	1.323 (2)
C11—H11	0.9500	N61—C61	1.352 (2)
C12—C13	1.390 (3)	N62—C62	1.323 (2)
C12—H12	0.9500	N62—C61	1.351 (3)
C13—C14	1.374 (3)	C61—C80	1.475 (3)
С13—Н13	0.9500	C62—C74	1.475 (3)
C14—C20	1.470 (3)	N70—C70	1.351 (2)
N20—C22	1.340 (2)	N70—C74	1.375 (2)
N20—C20	1.341 (2)	C70—C71	1.381 (3)
N21—C20	1.318 (2)	С70—Н70	0.9500

N21—C21	1.353 (3)	C71—C72	1.382 (3)
N22—C22	1.324 (2)	C71—H71	0.9500
N22—C21	1.344 (3)	C72—C73	1.388 (3)
C21—C40	1.476 (3)	С72—Н72	0.9500
C22—C34	1.475 (3)	C73—C74	1.376 (3)
N30—C30	1.351 (2)	С73—Н73	0.9500
N30—C34	1.376 (2)	C80—C85	1.393 (3)
C30—C31	1.386 (3)	C80—C81	1.394 (3)
С30—Н30	0.9500	C81—C82	1.381 (3)
C31—C32	1.384 (3)	C81—H81	0.9500
C31—H31	0.9500	C82—C83	1.389 (3)
C32—C33	1.385 (3)	C82—H82	0.9500
С32—Н32	0.9500	C83—C84	1.376 (3)
C33—C34	1.378 (3)	С83—Н83	0.9500
С33—Н33	0.9500	C84—C85	1.390 (3)
C40—C41	1.388 (3)	C84—H84	0.9500
C40—C45	1.400 (3)	С85—Н85	0.9500
C41—C42	1.390 (3)	P10—F12	1.5943 (14)
C41—H41	0.9500	P10—F10	1.5980 (13)
C42—C43	1.386 (3)	P10—F11	1.5981 (13)
C42—H42	0.9500	P10—F14	1.6015 (13)
C43—C44	1.383 (3)	P10—F15	1.6029 (14)
C43—H43	0.9500	P10—F13	1.6104 (13)
C44—C45	1.380 (3)	P20—F20	1.5887 (14)
C44—H44	0.9500	P20—F24	1.5970 (13)
C45—H45	0.9500	P20—F21	1.5988 (13)
N50—C50	1.341 (2)	P20—F23	1.6022 (14)
N50—C54	1.380 (2)	P20—F22	1.6033 (15)
C50—C51	1.383 (3)	P20—F25	1.6056 (15)
N10—Ru1—N30	154.76 (6)	C52—C51—H51	120.3
N60—Ru1—N20	179.28 (7)	C53—C52—C51	118.88 (19)
N70—Ru1—N50	155.22 (6)	С53—С52—Н52	120.6
N20—Ru1—N70	103.31 (6)	С51—С52—Н52	120.6
N20—Ru1—N50	101.42 (6)	C52—C53—C54	119.35 (18)
N20—Ru1—N10	77.77 (6)	С52—С53—Н53	120.3
N20—Ru1—N30	77.00 (6)	С54—С53—Н53	120.3
N50—Ru1—N10	91.99 (6)	N50	122.12 (18)
N50—Ru1—N30	92.35 (6)	N50	114.54 (17)
N60—Ru1—N50	77.85 (6)	C53—C54—C60	123.34 (17)
N60—Ru1—N70	77.42 (6)	C60—N60—C62	117.61 (16)
N60—Ru1—N10	102.25 (6)	C60—N60—Ru1	121.10 (13)
N60—Ru1—N30	102.98 (6)	C62—N60—Ru1	121.27 (13)
N70—Ru1—N10	91.67 (6)	C60—N61—C61	115.55 (17)
N70—Ru1—N30	94.71 (6)	C62—N62—C61	115.62 (17)
C10—N10—C14	116.93 (17)	N61—C60—N60	123.30 (18)
C10—N10—Ru1	129.03 (13)	N61—C60—C54	124.22 (18)
C14—N10—Ru1	114.03 (12)	N60—C60—C54	112.47 (16)
N10-C10-C11	122.65 (18)	N62—C61—N61	124.81 (17)
N10-C10-H10	118.7	N62—C61—C80	117.91 (18)

C11—C10—H10	118.7	N61—C61—C80	117.28 (18)
C12—C11—C10	119.80 (19)	N62—C62—N60	123.03 (18)
C12—C11—H11	120.1	N62—C62—C74	124.68 (18)
C10-C11-H11	120.1	N60—C62—C74	112.28 (16)
C11—C12—C13	118.93 (19)	C70—N70—C74	117.23 (17)
C11—C12—H12	120.5	C70—N70—Ru1	127.56 (13)
C13—C12—H12	120.5	C74—N70—Ru1	115.09 (13)
C14—C13—C12	118.61 (19)	N70—C70—C71	122.21 (18)
C14—C13—H13	120.7	N70—C70—H70	118.9
С12—С13—Н13	120.7	С71—С70—Н70	118.9
C13-C14-N10	123.06 (18)	C70—C71—C72	120.02 (19)
C13—C14—C20	122.33 (17)	С70—С71—Н71	120.0
N10-C14-C20	114.62 (17)	C72—C71—H71	120.0
C22—N20—C20	117.20 (16)	C71—C72—C73	118.71 (19)
C22—N20—Ru1	121.87 (13)	С71—С72—Н72	120.6
C20—N20—Ru1	120.87 (12)	С73—С72—Н72	120.6
C20—N21—C21	114.99 (17)	C74—C73—C72	118.93 (18)
C22—N22—C21	115.08 (16)	С74—С73—Н73	120.5
N21—C20—N20	123.77 (18)	С72—С73—Н73	120.5
N21-C20-C14	123.59 (18)	C73—C74—N70	122.87 (18)
N20-C20-C14	112.63 (16)	C73—C74—C62	123.19 (17)
N22-C21-N21	125.27 (17)	N70-C74-C62	113.88 (17)
N22—C21—C40	118.31 (17)	C85—C80—C81	119.08 (18)
N21—C21—C40	116.42 (18)	C85—C80—C61	120.80 (19)
N22-C22-N20	123.61 (18)	C81—C80—C61	120.12 (18)
N22—C22—C34	124.21 (17)	C82—C81—C80	120.3 (2)
N20-C22-C34	112.13 (16)	C82—C81—H81	119.9
C30—N30—C34	117.11 (16)	C80—C81—H81	119.9
C30—N30—Ru1	127.86 (13)	C81—C82—C83	120.4 (2)
C34—N30—Ru1	114.98 (12)	C81—C82—H82	119.8
N30-C30-C31	122.18 (18)	С83—С82—Н82	119.8
N30—C30—H30	118.9	C84—C83—C82	119.66 (19)
С31—С30—Н30	118.9	С84—С83—Н83	120.2
C32—C31—C30	120.11 (19)	С82—С83—Н83	120.2
С32—С31—Н31	119.9	C83—C84—C85	120.5 (2)
C30—C31—H31	119.9	C83—C84—H84	119.8
C33—C32—C31	118.56 (19)	C85—C84—H84	119.8
С33—С32—Н32	120.7	C84—C85—C80	120.1 (2)
C31—C32—H32	120.7	С84—С85—Н85	119.9
C34—C33—C32	119.07 (18)	С80—С85—Н85	119.9
С34—С33—Н33	120.5	F12—P10—F10	90.99 (8)
С32—С33—Н33	120.5	F12—P10—F11	90.25 (8)
N30—C34—C33	122.95 (17)	F10—P10—F11	90.97 (7)
N30—C34—C22	114.00 (16)	F12—P10—F14	90.22 (8)
C33—C34—C22	122.99 (17)	F10—P10—F14	89.70 (7)
C41—C40—C45	119.70 (18)	F11—P10—F14	179.17 (9)
C41—C40—C21	120.25 (18)	F12—P10—F15	179.52 (9)
C45—C40—C21	120.01 (19)	F10—P10—F15	89.46 (8)
C40—C41—C42	119.8 (2)	F11—P10—F15	89.57 (7)

C40—C41—H41	120.1	F14—P10—F15	89.95 (8)
C42—C41—H41	120.1	F12—P10—F13	89.68 (7)
C43—C42—C41	120.2 (2)	F10—P10—F13	178.99 (8)
С43—С42—Н42	119.9	F11—P10—F13	89.79 (7)
С41—С42—Н42	119.9	F14—P10—F13	89.53 (7)
C44—C43—C42	120.07 (19)	F15—P10—F13	89.87 (7)
С44—С43—Н43	120.0	F20—P20—F24	90.05 (7)
С42—С43—Н43	120.0	F20—P20—F21	90.18 (7)
C45—C44—C43	120.2 (2)	F24—P20—F21	179.50 (9)
C45—C44—H44	119.9	F20—P20—F23	179.55 (10)
С43—С44—Н44	119.9	F24—P20—F23	90.15 (7)
C44—C45—C40	120.0 (2)	F21—P20—F23	89.63 (7)
С44—С45—Н45	120.0	F20—P20—F22	90.33 (8)
С40—С45—Н45	120.0	F24—P20—F22	90.25 (8)
C50-N50-C54	117.38 (17)	F21—P20—F22	89.31 (7)
C50—N50—Ru1	128.60 (13)	F23—P20—F22	90.08 (8)
C54—N50—Ru1	114.01 (13)	F20—P20—F25	90.50 (9)
N50-C50-C51	122.80 (18)	F24—P20—F25	89.90 (8)
N50-C50-H50	118.6	F21—P20—F25	90.54 (7)
С51—С50—Н50	118.6	F23—P20—F25	89.10 (9)
C50—C51—C52	119.45 (19)	F22—P20—F25	179.16 (9)
C50-C51-H51	120.3		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C41—H41…N21	0.95	2.47	2.793 (3)	100
C45—H45…N22	0.95	2.52	2.826 (3)	99
C81—H81…N61	0.95	2.47	2.797 (2)	100
C85—H85…N62	0.95	2.50	2.823 (3)	100

